10 Things You Should Know About Designing with Batteries | | Things That Matter | Why | |---|---|--| | 1 | Battery Chemistry | The various battery chemistries can have different: • Voltages – Open Cell and Operating • Operating temperature ranges • Self discharge rates, i.e. Shelf Life | | 2 | Size | In general, larger batteries have; | | 3 | Construction | Batteries are made in Cylindrical, Flat, and Coin/Button form factors • Cylindrical batteries are able to discharge at higher rates than flat, or coin/button cells. • Batteries made with wound electrodes have the highest discharge rate capability • Coin/Button cells have small form factors, but also low discharge rates. | | 4 | Depth of Discharge | Battery capacity is specified to end of life voltage Over discharge leads to cell damage and leakage Circuit designs must have voltage cut offs | | 5 | Safety | Primary batteries are not to be charged. Battery cavities should be isolated from the circuits Battery cavities should be designed with battery polarity control. | | 6 | Temperature | Battery performance declines at low temperatures High temperatures increase self discharge and reduce shelf life | | 7 | Environmental Conditions | Temperature, humidity, shock and vibration all can reduce battery performance and damage the battery. Please consult Duracell for safety and handling guidelines | | 8 | Batteries are not AC Power
Supplies | Batteries are dynamic sources of power The battery's internal resistance rises with the depth of discharge Power declines as internal resistance increases Batteries are impacted by environmental conditions | | 9 | Batteries have Shelf Life or "Freshness" limits | Shelf life refers to the ability of the battery to retain capacity under specified storage conditions. Different battery chemistries have different shelf life limits, ranging from 3 – 15 years depending upon the chemistry. Rechargeable batteries lose energy at a high rate and need to be recharged weeks or months after the last charge. | | | Things That Matter | Why | |----|--|---| | 10 | Intermittent vs. Continuous
Discharge Affects Run Time | Discharging batteries intermittently results in longer run times than with a continuous discharge. Designing discharge with an optimized pulse drain and duty cycle will result in the best run time | | | For more design help, contact
Duracell's Global OEM Sales and
Consulting Group | <u>www.duracell.com/OEM</u> | | | | |